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GermanY 
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Abstraci For the scalar cp4-latlice model of shuctural phase transitions the k n n g  kansition 
at a temperauue 7,' above T, is found in lhe framework of mcde-coupling theory. To study the 
critical behaviour of this bansition the fquency and temperature dependencies of the linear and 
quadratic dynamical susceptibility are investigated by using a self-consistent numerical solution 
of the mode-coupling equations. mo rases are cansidered (i) a pure rrystalline system with a 
B bansition at T,'. and (ii) a system with randomly dishibuted defects with an A bansition ai 
T,'. The experimental aspens of the presented results are discussed. 

1. Introduction 

In crystalline systems with a structural phase transition some anomalous behaviour can be 
observed above the transition temperature Tc [ 1.21, In perovskites, for example, the classical 
soft-mode picture of structural phase bansitions breaks down and precursor fluctuations give 
rise to an extra very narrow central peak in the order parameter fluctuation spectrum [2,31. 
In addition to many attempts to explain the appearance of correlated clusters (precursors) a 
concept has been developed [4,5] that is similar to that for the dynamical glass transition 
suggested by Gotx and co-workers [6] on the basis of mode-coupling theory. According 
to this theory in pure crystalline systems an ideal narrow (static) central peak must set in 
at the so-called freezing temperature T,". This transition is accompanied by an appearance 
of finite long-time comelations of the local atomic displacement ui = Qi - (Qi). i.e. 

b . j  = &%(ui(t)uj(O)) # 0 T < T,* (1) 

where (. . .) denotes the thermodynamic average. In mode-coupling theory the limit in 
(I)  means strictly fm + w. This would imply an ergodicity breaking t4.71. For 
improved approaches dealing with realistic systems. ( 1 )  should be formulated with a large 
experimentally and theoretically accessible timescale tm. Characteristic values of tm may 
range from 10-'s to a few seconds, according to the kind of system being investigated. The 
disadvantage of such a condition is that the transition temperature T,' is not well defined. 
Therefore (1) is not suitable to prove the mode-coupling results experimentally. It is the task 

8 Presenl address: Fraunhofer Institute for Nondesrmctive Testing, University of h e  Saatland. Building 37, D- 
66123 Saarbrikken 11, Federal Republic of Germany. 
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of this paper to draw attention to experimentally significant characteristics of a transition at 

Thus, in a formal sense, the physi&l situation at T > T, in the systems with a structural 
phase transition reminds one of supercooled liquids or polymers above the glass transition 
point T, 19, IO]. In recent years, with mode-coupling theory at hand, substantial progress 
has been made in the understanding of the freezing process near the glassy transition. The 
main mult was the prediction of the dynamical glass transition temperature T; Y T,+ AT, 
where A T  is about 50K. At this temperature the intensity of the quasistatic central peak in 
the density fluctuation spectrum and the dynamical density response function exhibits critical 
scaling behaviour in certain frequency regions [6,10,11]. This prediction was partly verified 
in a number of experiments with glassy materials [IO, 12-16]. 

Following this idea, it would be interesting to look at T; > T, for some 
experimental confirmation of the existence of the freezing transition in crystalline systems. 
Simultaneously, the question may arise as to whether, in systems with transitions into 
structural, dipole, orientational, spin, quadmpole or any other glassy states, the dynamic 
freezing transition can be observed above the thermodynamic glass transition temperature 
Tg[17. 181. To answer this question, investigation of the intensity of the central peak is not 
sufficient, as some kind of hopping processes could smear the central peak near T 6 T,*, 
making impossible unambiguous identification. The presence of static or relaxing defects 
would mask the central peak of intrinsic dynamical origin 1 171. Therefore, the analysis of 
the dynamical response functions at not too low frequencies is more suitable as a test of 
the critical scaling behaviour at T:. This has successfully been done for glasses [161. 

This paper presents a numerical calculation, made in the framework of mode-coupling 
theory, of the frequency and temperature dependence of the real and imaginary part of the 
dynamical susceptibility near the freezing transition. The calculation was performed for 
the scalar p4-lattice model of structural phase transitions. The mode-coupling equations for 
the isothermal relaxation function were solved directly in real-time space. The resulting 
integro-differential equation was handled by the predictor-comector method, and the time 
evaluation over five time decades was analysed. 

We hope that the theoretical results presented will stimulate a detailed experimental 
search for the freezing transition at temperatures above Tc (or T,) in crystalline systems. 
This could be done by neutron  and^ light scattering methods or dielectric and magnetic 
relaxation measurements. 

V L Aksenav et a1 

T3. 

2. Model and mode-coupling equations 

The scalar p4-lattice model is determined by the Hamiltonian [3,19] 

where Qj is the coordinate of the local normal mode that determines the structural phase 
transition. Within the elementary cell Qi can be considered as the coordinate of the effective 
particle of mass m = I ,  moving in a double-well potential; P, is then the conjugate 

t We note lhat the mode-coupling scenario is not the only one describing lie- msitions. 11 is known chat 
ergodicity brealting may have srmcmral or dynamical reasons [7]. merefon we believe lhat in certain systems, 
e.g. in ortholerphenyl f81, freezing anomalies will be abed at the thermodynamic glass bansition (at T, < T:) 
as well as at the dynamical freezing vansition (at T;). 
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momentum of this particle. The interaction between the particles occupying different lattice 
cells of a three-dimensional lattice ( i  = 1, . . . , N) is then described by the harmonic force 
constants Cij. In the pure crystalline case the parameters of the Hamiltonian are independent 
of the cell number, but in quenched disordered systems they can be random. To study the 
influence of defects on the phase transition, only the parameters Ai are assumed to be site 
random ( E ;  = E ) .  Following [5] let us consider A; = A&O at defect sites and Ai = A z 0, 
otherwise. If p is the defect concentration, then the probability distribution of Ai looks like 

(3) 

To study the relaxation processes in the model we introduce the averaged isothermal 
relaxation function 

P1Ai) = ~ 6 ( A i  - AD) + (1  - p)G(Ai - A ) .  

@ P r x ( f )  = (Uf(t)lYk) = dS'(ui(t - iS')ud B = l / k e T  (4) 
J r  

where ur(t) = Q,(t) -(el} is the displacement operator, the bar denotes the configurational 
average over the random quantities Ai. and (. . .) is the thermodynamical average taken 
over canonical ensemble. Hereinafter we use units with f r  = 1. The initial value of Of&) 
determines the static isothermal susceptibility xi = = 0). By introducing the Laplace 
transform of @ r k ( r )  in the form 

@it(z) = i &eiz'@,&) ( (u/ lut))  Imz > O (5) Im 
the following exact q-representation can be derived by the equation of motion and using 
the Mori-projection formalism 1201: 

where mfk(z) = (1/N) E, @,(z)exp[iq(& -&)I. The relaxation kernel Mi.&) is given 
by 

Mfk(Z) = ( tQilQd)tz,  (7) 

where the lower index (2, denotes the projection procedure to be done in the way suggested 
by Tserkovnikov [4,21]. In the spirit of the mode-coupling approximation the relaxation 
kernel is estimated with the expression that comes from factorization of ui powers 
and truncation of the configurational average in (7), as in [5]. For the classical limit 
(@id0 B(ur(t)udO))) we get 

M d O  = VI@/&) + U 3 O / k 3 ( t ) .  (8) 

The coupling parameters are determined in the following way: 

V I  = A 2 p ( l  - p ) ( l  - Ao/A)' g = 6B2kgT2. (9) 

To get large values for V I .  even for small concentrations p ,  strong harmonic defects 
( \AD\  >> A )  are necessary. 
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To simplify further calculations we exploit the fact that the critical scaling law does 
not essentially depend on relaxation function dispersion [ 10.221. Therefore, to qualitatively 
investigate the freezing dynamics picture at T: we neglect the relaxation kernel dispersion, 
i.e. Mih(t) m &M(t). Then, self-consistent determination of a diagonal or local part of 
the relaxation function becomes possible, if we use the following ansatz for the isothermal 
susceptibility: 

where U; has the form 

u $ = A r + C  r= (T -T , ) /T ,  (11) 

and C = cj Cjj. The ansatz (10) is in accord with Landau theory and will be a reasonable 
approximation inside the non-critical region with respect to the structural phase transition. 
Within this approach the critical temperature can be estimated as T, = 4 f O T 0  151, where 
f o  = CIA is the dimensionless coupling parameter and TO = Az/Bks is some unit of 
temperamre expressed through model parameters. We then assume that r,' lies outside the 
critical fluctuation region, as the mode-coupling theory for the freezing transition (also for 
the dynamical glass transition) assumes no critical fluctuations at Tc 14, lo]. 

It is worth emphasizing that, in spite of (10). we do not consider the case of an infinite 
interaction radius, i.e. C,j = C/N. Then the model is solvable and, as is shown in 1231, at 
C/A c 1 the quantity Lii(T) tends to zero only if T + 00, and only at CIA > 1 vanishes. 
Of course, the freezing transition is expected only for systems with a finite interaction 
radius 124-261. The approximation used above should be considered as an approximation 
valid for systems where the freezing transition really exists. Wcthin our theory we cannot 
prove the existence of such a transition. However, if this transition exists, the presented 
mode-coupling theory may give a good guideline for the experimentalists in the same way 
that mean-field theory does in the case of usual phase transitions. 

Thus it is possible to rewrite (6) in the time representation. On carrying out Laplace 
back-transformation of (6) and taking into account (8x1 1) one can obtain the following 
equation: 

60) + W i @ ( t )  + p&(t - i ) M ( i )  = 0 (12) 

with the initial conditions 

@(O) = X T  &(O) = 0. (13) 

It is convenient to express (12) through dimensionless variables and parameters. Inbuducing 
the new function D(t) = @ ( t ) / X T ,  it takes the form 

6( t )+a$D( t )+~ 'dFb( t  - i )M( i )  = O  

with the initial conditions 

D(0) = 1 D(0) = 0. 

(14) 
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For the sake of convenience in what follows we will also use the dimensionless frequency 
and time variables, i.e. o + @/A'/ '  and t -+ tA ' / * .  Within this notation we have 

If no direct measurement of linear susceptibility is possible, then the observed quantities, 
like damping and the velocity of ultrasonic waves, have contributions from several non- 
linear response functions. To follow the influence of these contributions let us consider the 
quadratic susceptibility 

x121(0) = OLT[(U:(NU~O))I (16) 

where LT[F(I)] means the Laplace transform of F( t ) .  To estimate (16) the factorization 
procedure used for the approximation of the relaxation kemel can be employed. Neglecting 
a contribution of the correlation functions of the type of ((uTIui)) and ((u:li i))  to ((u:luf)), 
the latter can be approximated by ( (u;Iu:))(~),  and then the quadratic susceptibility can be 
presented in the following way: 

0; = 5 fo.  

To solve the above equations one needs to apply an appropriate numerical procedure. In 
the next section we describe a suggested method for the solution of the integro-differential 
equations like (14). 

3. The numerical procedure 

Let us consider the general form of the memory integro-differential equation of second order. 
With the abbreviation in@) E M ( t ) / o :  and adding a small phenomenological microscopic 
relaxation term one obtains the relaxation equation in the following form: 

b(t) + ub(t) + w i ~ ( t )  + 0; 1' &b(t - i)m(i)  = o 

D(0) = I b(0) =o.  (19) 

(18) 

with the initial conditions 

The memory-type equations like (12) and (18) appear in numerous theoretical studies 
of dynamic phenomena. For instance, the theory of long-time relaxation processes in 
supercooled liquids [IO] is based mostly on the analysis of the behaviour of the solutions 
of these integro-differential equations. The specific behaviour of the dynamic response 
functions can be described by solving (18) with an appropriately chosen kemel m(t )  as the 
polynomial in D(t): 

m( t )  = T{D( r ) ]  = CnD"(t). (20) 
n 

Comparing with (8) the parameters C,, are given for the scalar p4-lattice model by the 
following equations: 

ii, = ul/o," = (T + f o ) * p ( ~  - p ) ( ~  - A ~ / A ) '  

C3 = U3/0: (T + ~ o ) ~ ( T / T o ) '  & = in>4 = 0. 
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The widely used method [lo] for solving (18) can be briefly described as follows. 

(i) The trial function Dlol(t) is taken inside some appropriate time domain. 
(ii) The relaxation kernel m['I(t) = FID[kl(r)} is calculated (with k = 0 in the first step). 
(iii)The Laplace transforms of both the correlator D['l(z) = LT(DlkJ(t)}  and the relaxation 

(iv)The next approximation for the correlator Di'+'l(z) is obtained according to (6): 

V L Aksenov et a1 

kernel m i x l ( z )  = LT{m'"(t)} are performed. 

(v) The back Laplace transform (BLT) is used for obtaining the approximate solution 
D"+"(f) = BLT{DiX+"(r) ) .  

(vi)The integral convergence criterion is used to decide on whether to stop the iteration 
procedure or to continue the calculation from (ii). 

Although Laplace transforms of almost any function are now relatively simple to do 
numerically on a small supercomputer 1271, problems remain in solving the above-described 
self-consistent procedure. In this connection the authors in [ZS] found that "this proceduc 
is not practical.. .since Laplace transforms are very cumbersome for functions, which are 
structured and saetched on such large windows.. .". In the present paper we suggest a 
different numerical approach to the solution of (18). Wis method in the themy of ordinary 
differential equations is called the predictor-corrector method [29,30]. The method consists 
in doing the following subsequent steps. 

First, we obtain the Taylor expansion of the unknown function near t = 0 up to seventh 
order in f 

D ( t )  = 1 +a$* +a$' t . . . + a7t7 (22) 
in order to explore this precise series in  finding a solution at the first few steps of the 
integration scheme. The coefficients OX are determined after substituting (22) into (18). The 
initial conditions were already used in (22). 

Application of the predictor+o&tor method to the second-order integro-differential 
equation means a splitting of the original equation into a system of two first-order equations 
by introducing the new function P ( t )  = D(t) .  Then we can write the system in the 
following 'standard' form: 

PU) = F ( D ( 0 ,  P @ ) ]  b(f)  = G{D(t ) ,  P ( t ) l  (23) 
with the initial conditions P(0) = 0, D(0) = 1. Here we introduce 

FlD(t), P ( 0 )  = -uP( t )  -&DO) t I ( t ) )  C [ D ( r ) ,  P(t ) }  = P(t )  

where the integral part is 

I ( t )  = d f P ( i ) m ( r  - 3  (24 I' 
with m ( t )  defined by (20). Then we introduce the grid representation of all functions in the 
form Di = W i ) ,  Pi = P(S). mi = m(f i ) ,  with a discrete time ti = ih  expressed through 
stepsize h. To predict the values of Di+l and Pi+, we use 

(25) 

= Di-1 + 2 h G [ D ; ,  Pi] (26) 

to1 - 
Pi+, - Pi-I f Z h F I D i ,  p i ]  
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Figure 1. The time dependence ofthe relaxation function dW of the 
F, model for different temperatures r .  r = O(1): 0.W2): 0.0OSO); 
O.OlO(4): 0.012(5): 0.014(6). The M n g  temper” rr a 0.W83 
for this set of model paramelen. 

and make corrections according to iteration over k 

D!’+” !+I = Di + $(G{D,, Pi] + c[D;yl, P$}) (28) 

while the convergence criterion [(Djz” - Di+,) (k) 2 + (P/:y) - Pj:),)z]1/2 6 E is satisfied. 
One of the advantages of the predictor-corrector method consists in the fact that a more 
exact calculation of the correlation function D ( t )  near the beginning of the z axis is due 
to the use of this very point convergence criterion. We then take into account a simple 
estimate of the discretization error of the predictor-corrector method [30] by 

(29) s q + ,  = - P ; y )  SDi+[ = ;(Djyl - D,+, U+I) ) 

and use (29) to obtain the final correction for the solution (27). (28). 
It is necessary to say a few words about the calculation of the integral part l ( t ) .  In 

choosing a scheme of numerical integration it is necessary to take into account the complex 
estimate of calculational difficulty. On one hand, there exist many numerical methods of 
enhanced precision (h3 or higher order) but all of them require larger-volume calculations 
with increasing accuracy. On the other hand, to find solutions at every new time point ti, 
it is necessary to recalculate (24). Since usually we need about 103-l@ points in a time 
domain, it appears suitable to use the simplest scheme of the first order in h: 

This notation illustrates another advantage of this scheme, namely that in the stage of making 
the correction iteration the sum is calculated only once. 

Finally, once the dimensionless solution D ( t )  is obtained within a suitable time domain, 
we renormalize it to operate in the following with the mode coupling correlator @ ( t ) .  This 
transformation is the reverse transformation to that we used for deriving (14) from (12). 
Further numerics are standard rather than new. Thus, for example, we performed Laplace 
transform of the correlators by the Filon algorithm [31]. The numerical method proposed 
can easily be realized on any type of modem computer. We made use of a VAX-8650, 
where typical CPU times were about 10-20 minutes per run. At the vicinity of the freezing 
transition the calculation of each curve took around two hours. 
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4. Results and discussion 

The time-dependent local relaxation function @(f) from (12) is shown in figure 1 for the case 
ut = O(p = 0) (the F3 model in Gotze's notation [IO]), fo = 0.3 and Tc = 0.1%. The time 
evolution can be followed over nearly six decades. Since r < 5,' % 0.0083, the function 
@(I) has a finite value for f + 00 in agreement with the result directly obtained from 
(61, if one takes the limit Lii = limz+ioz@ii(z) [51. The value 1: = Lii(r,')/XT(r:) = 
(a discrete B transition [IO]). For r > 5,' two characteristic relaxation regions can be 
distinguished: when Q(f)  - 2.0 it is the ,9 relaxation, and the region when Q(t) -b 0 
belongs to a relaxation. To obtain more information about both relaxation tegions the 
Laplace transform of Q(r) should be studied In figures 2 and 3 the real and imaginary part 
of the dynamic susceptibility 

V L Akrenov et a1 

x(w)  =WLT[@(f)l(m) (31) 

for the F, model are shown. It can be seen that the linear and quadratic susceptibility 
have nearly same qualitative o and T dependencies. From these curves a qualitative 
representation of the scaling laws of (Y relaxation (w - and B relaxation (o - IO-') 
can be derived. Gijtze 110,321 found the analytical expressions for these scaling laws from 
(6) and (8) using E = (T - T , ) / T , ,  as the small expansion parameter, and considering the 
w -+ 0 limit. For E > 0 two frequency scales o, - E'mi1/2b and wg - 6'1% separate the 
(Y and B relaxation. Around wp the simple interpolation formula 

~ " ( 0 )  = &[r(l - a )  sin(rra/2) (w/oa)" -k 6 r(l + b)  sin(zb/2) (oa/o)b] (32) 

can give a good approximation to the susceptibility behaviour illustrated in figure 3. Unlike 
the usual phase transition case the exponent parameters a and b are not the universal ones 
and depend on model parameters and hence, on temperature. According to 1321 these 
parameters are determined by the equation 

rz(i - a ) /  r(i -2a)  = r2(i + b) / r ( i  + 26) = A(T) 

AV) = 3 (1 - iC)3 U 3 k  

(33) 

where r ( x )  is the Gamma function. The exponent parameter A(T) is given by 

ic = B L ~ ~ ( T ) / ~ T ( T ) .  (34) 

In figure 4 the quantities lC(T). A(T) ,  a (T)  and b(T) arc shown as the functions of 
temperature. 

Another insight into scaling behaviour can be. gained by considering the temperature 
dependence of ~"(0, T )  at fixed frequency w. This is the typical experimental situation, 
for example, with Brillouin scattering. The corresponding results are plotted in figure 5. 
Unfomnately. these curves show that the T dependence of x ( w ,  T )  lacks sensitivity for 
the experimentalists to detect anomalous critical behaviour at T;. For example, for E c 0, 
x"(o, T )  - w 1 ~ 1 - ~ / ~ + ' ~  was predicted by the theory. One has to remember, also, that T,' 
is very close to T, in the pure B-type transition case [4,5] and no definite conclusion about 
the freezing transition in pure systems can be drawn from such experiments. 

Let us now consider the Fla model (UI # 0) arising when one includes the non-zero 
defect concentration p # 0. To enlarge the interval between Tc and T; we take V I  = 6.25A2 
and fo = 2. I ,  corresponding to T = 0.7 TO and T; = 0.98 To or r,' = 0.4. As we choose 
the control parameter UI large enough the freezing transition changes its type, i.e. now 
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lodo)  
Figure 2. The frequency dependeye of the p (I:  ,y' 
and 2: x , ' ~ ) )  and imaginary (3: x and 4 xn,) part of 
L e  susceptibility of the F3 model for the temperatllle 
T = 0.012 > r:. The odd and even labels correspond 
U) a linear and quadratic pan of the susceptibility, 
respectively. See text for details. 

I. I 

Fgrre3. The imaginary part of susceptibility ~ ' ( 0 )  of 
the F3 model against log(w) for different temperarures 
7. 

0.48 

0.46 

0.44 1.4 

0 2  
0.12 

0.40 0.0 o.oon o m 2  a.oa.1 m o i i  a.oon o oaa a m  o,om a.aoo o m 8  

Figure 4. (a) 'The characteristic exponenb a (1) and b (2). and (b) the exponent parameter h 
(3). and the nonergodic consfant I ,  (4), against temperature for the F3 model. 

z 'i 

Lii(r -+ 6) + E -+ 0 (the A transition [lo]). Due to this continuous transition no 
freezing of the CY peak occurs, as shown in figure 6. There is no a peak at all. The scaling 
behaviour is now restricted to p-like relaxation at o - wp - for 
o << wp and x"(o) - U"' for o >> 649. The temperature dependence of the parameter a' is 
shown i n  figure 7 (see (33)). From the double logarithmic plot of ~"(0) in figure 6 it follows 
that the analytical scaling laws are not quite illustrative in such a presentation. On the other 
hand, the critical temperature behaviour of ,y"(w,r) at fixed frequency is clearly seen in a 
relatively wide frequency window (see figure 8). For rather different frequencies ~ " ( 0 ,  r )  
has a pronounced peak at f .  The peak becomes the broader the higher the frequency. 
Nevertheless, for T Ti and T z TP+, where Tp is determined by w = wg(Tp), the scaling 

~ " ( w )  - 
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a4 

ao 

1.2 

0,8 

0.4 

0.2 

0.0 ~~ 0.100 0.102 0.101 T/To 0.106 0.108 0. 
10 

F@re 5. The imaginary part of the linear 2' (I) and quadratic x i ,  0) susceptibilily a p h t  
temperature for the FI model for w = 0.1 (a) and w = 0.01 (b). The model parameters are 
Tc = 0.1 To and r: % 0.0083. 

law ~"(0, T ) / w  - ~l-l/ ' ' '  can be suficiently well recognized, if the measuring frequency 
is not too high (see figure 9). Here the influence of the quadratic susceptibility X(Z,(O) is 
not drastic and in the region of the scaling law validity (T < T; and T > T:) $,(a, T) 
is a nearly flat function of temperature. Therefore, the critical behaviour in ~"(0, T )  is 
not masked with quadratic susceptibility, if the measured quantity is influenced by both 
susceptibilities. 

0,05 0.500 

~ ~ ~ a ( T )  0.606 0.408 

0.02 0.4011 

0.01 0.492 

0.00 . 0.490 
0.70 0.75 0.80 0.85 0.00 0.85 

T/To 
Fpre 6. The imaginary part of lhe susceptibility 
x (0) of the Fi3 model against log(@) for different 
tempralum r. r = O(1): O.IO(2); 0.25(3): 0.?0(4): L (3) against temperature for the model. 
O.SW5): 0.W6): 0.70(7). Broken curves correspond lo 
a non-ergodic regime, whereas full cwes m m p o n d  
to lhe temperatures r 

Figure 7. The characteristic exponent a' (I) .  the 
exponent parameler .I (2). and the non-ergcdic wnstant 

r: = a40. 

At the same time as ~ " ( w ,  T) shows a peak at r: the real part ,y'(w, T) changes its slope 
at r; and a cusp-like behaviour is observed, more clearly at lower frequencies, up tow -+ 0 
(see figure 8). This feature of the A-type freezing transition reminds us of the spin-glass 
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0.5 

v 0=0.001 

0.3 

O" 1 -- I 
0.ow 

Flgure 8. The temper- 
ature ,dependence of the 
real x (,& c, e) and Mag- 
inary x (b, d. 0 pans 
of the susceptibility of the 
Flf model for lhe Fre- 
quencies a, = 0.1, 0.01, 
0.001. The labels 1 and 

0.00, 

2 correspond to lhe linear 
D and quadratic aanS of sus- 

T/To ceptibility, +lively. 

Figure 9. An illusmtion of a tendency to reach lhe master 
function for the imaginary pari of susceptibility wilh a decrease 
of frequency. Here a, = 0.1OU); O.OOI@); 0.001(3): O.WOl(4). 

5 

transition. However, unlike that transition the freezing temperature r,' does not depend on 
the measuring frequency. The important point to be decided is whether the experimentally 
found anomalies (the cusp behaviour) are connected with the dynamical freezing transition 
or with the thermodynamic glass transition. 

Several attempts were made to describe the transitions in spin-glasses [33], in 
orientational glasses [34] and in polymers [35] in the framework of mode-coupling theory. 
This possibility has to be ruled out in the light of our results for the A-type freezing 
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transition. This means that all peaks in loss functions or the cusp-like points in real parts of 
the susceptibility suffering a clear frequency shift (e.g. by an Arrhenius or Vogel-Fulcher 
law) cannot be ascribed to a dynamical freezing transition found by the mcde-coupling 
theory. These anomalies are caused by some other type of freezing kinetics, e.g. relaxation 
in a random potential landscape [7,36]. 

We wish to emphasize again that, as far as it concerns the application of our results 
obtained in the framework of the mode-coupling approach, we look for a new kind of the 
freezing transition, which should take place above T, in systems with usual structural phase 
transitions. For systems with a structural glass transition this dynamical transition should 
be searched for above the frequency-dependent thermodynamical glass transition point TV 
It is possible that this transition is not observable because of too strong an influence of 
the relaxing defects or hopping processes connected with correlated clusters. These effects 
are neglected in mode-coupling theory [10,37,38]. In principle there are two ways of 
overcoming these shortcomings of the theory. 

First, following the phenomenological approach of [17] the relaxing defects can be 
included via the ansatz (cf (6)) 
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where MP,(z) is determined by (8). In the general case the parameter A1 and the relaxation 
time (e.g. q = q"exp(-E,/kBT)) of a local relaxing defect are the random quantities. 
This additional relaxation process also yields an d i k e  loss peak at T -= T,' and can 
modify ~ ' ( 0 ,  T) and ~ " ( 0 .  T). For instance, the loss peak at T,' can be remarkably 
asymmetric [ 171. 

Second, according to the generalized kinetic equation approach of [38,39] hopping 
processes can be incorporated into by an improved expression for the relaxation kernel (7) 

(36) 

where the new kernel Sq(z)  contains the correlation functions of the type (ur(t)lrix(O)) 
(S& + 0) - 2) .  In consequence of this relaxation process the ideal central peak is 
smeared, i.e. at T e T; the d i k e  relaxation peak remains in ~''(0, 7'). This peak, 
however, does not show any critical scaling behaviour, as happens for systems with a broad 
distribution of relaxation times. 

Hence under certain, not yet very clear, circumstances the typical scaling dynamics of 
the freezing transition can be masked and the critical scaling behaviour of (Y relaxation be 
not observable at all. In spite of that, the critical ,!3 relaxation should be seen in systems 
where the time constants of the hopping processes are large enough in comparison with the 
characteristic timescale I/op of ,!3 relaxation. Therefore, the chance of finding a dynamical 
fwzing transition increases if the measuring frequency is taken to be sufficiently high, but 
not too high. 

So far. a clear indication that the freezing transition would take place has been observed 
only for supercooled liquids and polymers above Ts [l0,161. On the other hand, interesting 
data were obtained for a plastic crystal of difluortetrachlorethane (DFTCE). Using the 
Brillouin scattering technique (w - I-IOGHz) Kriiger and co-workers [40,41] detected a 
frequency-independent maximum in the damping r(o, T) of longitudinal acoustic phonons 
and a first hint of the scaling behaviour r(o, T) - (T - T,')-" for T -= T; - 160-170K. 
Furthermore, the longitudinal sound velocity changed its slope at T;. Assuming a linear 
coupling of the order parameter and elastic degrees of freedom in this plastic crystal, a 

Mq(z )  = q X z ) / ( I  - Sq(z)M;(z)) 
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change in eigenfrequencies (6& = CL$) and damping, r (w ,  T), of longitudinal acoustic 
phonons can be determined via dynamical susceptibility as follows: 

On the basis of these relations the Brillouin scattering results for D F r a  can be interpreted 
in the framework of the A-type freezing transition discussed above. In this connection it 
is worth noting that DFTCE possesses a real glass transition at Tg = 90K, where the sound 
velocity experiences a cusp-like change and the specific heat nearly has a jump. 

The 
experimental data must be carefully verified and a detailed analysis in terms of mode- 
coupling theory has to be made. This is work for the future. 

We end this section with a remark on the attempts made to explain the central peak 
phenomenon by defect induced condensation. In [42] a theory was elaborated for unstable 
lattices with a finite concentration n of defects. This theory predicts a defect-induced phase 
transition at T,(n) z T,(pure), where the order parameter becomes substantially non-zero 
only at defect sites, but at T < T,(pure) the whole system becomes long-range ordered. 
Interesting T, q and OJ dependencies of the central component of the order parameter 
fluctuation spectrum were found. A striking difference from our theory is connected with 
the anomalous critical behaviour of the static susceptibility at T,(n). The modecoupling 
theory for the dynamical freezing transition does not predict any anomalies in isothermal 
static susceptibility and only a cusp is allowed for the static limit of the dynamical response 
function. Therefore, a simple criterion can be used to distinguish between the dynamical 
freezing mechanism of mode-coupling theory and defect-induced condensation, proposed 
by Schwabl and Tauber 1421. To our knowledge the data on the static susceptibility for 
systems with a structural phase transition contain no indication of any remarkable anomalies 
above Tc. Therefore, we hope that the dynamical freezing transition is also to be observed 
in these systems. 

However, it is too early to make any final conclusions about this system. 

5. Conclusions 

The results of the numerical investigations of the w and T dependence of the dynamical 
response function near T,* within the scalar v4-lattice model offers some suitable possibility 
for the experimental confirmation of the existence of the freezing transition above the 
temperature of the structural phase transition. The mode-coupling approach predicts either 
(i) a B-type transition in pure systems, where an (Y relaxation peak freezes in at T:, or (ii) an 
A-type transition for the systems with strong enough defects, where the central peak begins 
to appear with zero intensity. It seems that the possibility of experimental observation 
appears more realistic in the latter case. 

To the best of our knowledge the experimental data on the intensity of the central peak 
do not contain any direct information about the transition region T - T,* [2,3,43]. A crude 
estimate of the central peak intensity always points to the A-type transition, if any freezing 
transition exists at all. The examples are the compounds SrTiOs [2,3,44], RbCaF4 13,451, 
and the TSCC [43,46,47] samples. 

In the case of a B-type freezing transition the temperature T; lies very near the 
phase transition point T,. Therefore, the critical fluctuations certainly mask the anomalous 
fluctuations that belong to the freezing transition. Nevertheless, a careful study of the w- 
dependence of the order parameter susceptibility at temperatures T > Tc might provide 
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some hint of the freezing transition occurrence. In particular, the existence of the scaling 
behaviour of two types around the a and ,3 relaxations would give a strong indication of 
the new phenomenon taking place, though the mode-coupling theory may be too crude to 
correctly describe the scaling exponents [%I. 

In the case of an A-type transition the situation is more favourable for carrying out 
an experimental test Here, the temperature T; lies far from Tc so the critical fluctuations 
can be excluded. The T-dependence of the dynamical response function for the reasonably 
high measuring frequency w must then reveal some peculiarities characteristic of the A-type 
freezing transition as such a transition occurs. The key point is the o-independent position 
of the loss peak (or susceptibility cusp) at a sought-for temperature T:, as well as the 
characteristic behaviour of the loss-peak wing. 

As well as direct measurements of the order parameter susceptibility (mechanic. 
dielectric or magnetic) indirect measurements appear also very useful for the solution of 
the considered problem. First, we consider neutron and Brillouin scattering investigations 
[12,13,16,48]. Other methods, like ultrasonic and N M R  measurements, also offer ways of 
detecting anomalies of the above-considered kind at the freezing transition. very p o d  
candidate to be used in the investigation of a freezing transition at T,* > To is the TSCC 
compound [43,46,47]). TSCC is a strongly anisotropic system with a one-component 
order parameter, i.e. this system can be well described by the scalar rp4-lattice model of 
structural phase transitions. In fact, in TSCC the central peak was found above T, in the 
temperature range T, c T -= Tz = Tc + AT", where AT* 5 20K. An investigation 
of the w and T dependence of the dynamical scattering function for this system, as was 
done for Ca,4Ko.6(N03),.4 by Cummins and co-workers 1161, would be very interesting. 
A corresponding consideration of other systems with structural instability, especially of 
perovskites, would be also very desirable. In this connection it cannot be excluded that the 
recently found anomalies in dielectric [49], EF% [SO], neutron scattering [51] and elastic [521 
measurements on SrTiO, at To N_ 40 K will be related to the dynamical &zing transition 
of the kind discussed above. Of course, in this case the quantum corrections have to be 
incoporated into some adequate theory 1-53], As a result one may hope to find the answer 
to the still open question of the existence of the freezing transition in crystalline systems 
with structural phase transitions. 

At that one should keep in mind the following circumstances. The dynamical scattering 
function is determined by the density4ensity correlation functions and can be approximated 
by the order parameter correlation function only in the lowest order. Therefore, it is 
necessary to include in the mode-coupling theory the higher-order fluctuation contributions. 
In principle it  is possible that the freezing transition can be observed only due to these 
contributions [IO]. We now deal with some theoretical approaches to this question. 

As mentioned in section 4 it would be also of interest to reanalyse the experimental 
data obtained for crystalline or disordered systems showing a glass-like transition at the 
temperature T,. An intriguing question is whether a dynamical freezing transition also occurs 
above the thermodynamic glass transition in such systems. The findings for DFIY% I401 are 
therefore of great importance and hence a detailed analysis of all available experimental 
data for DFTCE is very desirable. It would be important as well to clarify the differences and 
similarities between the freezing-like transition in DFTCE and in systems with an orientational 
glass transition [I71 and a spin-glass transition. It is likely that in the latter case the kinetics 
in a fixed stochastic energy-barrier landscape dominate in the behaviour of the dynamical 
response function, and it  might even happen that no dynamical freezing transition in the 
above sense takes place. 

Finally, we want to point to the problem of clearing up the microscopic structure of the 
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frozen state at temperatures T,,, e T < T&. In the above-reported numerical treatment 
only the diagonal part of the relaxation function was taken into account. Exploiting the q- 
dependent diffuse scattering in the neutron or x-ray diffraction experiments one can obtain 
essential information on the correlated cluster formation in the quoted temperature range. 
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